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Reversible random sequential adsorption of binary mixtures of extended objects on a two-dimensional
triangular lattice is studied numerically by means of Monte Carlo simulations. The depositing objects are
formed by self-avoiding lattice steps. We concentrate here on the influence of the symmetry properties of the
shapes on the kinetics of the adsorption-desorption processes in two-component mixtures. We provide a
detailed discussion of the significance of collective events for governing the time coverage behavior of com-
ponent shapes with different rotational symmetries. We also investigate the role that the mixture composition
plays in the deposition process. For the mixtures of equal sized objects, we propose a simple formula for
predicting the value of the steady-state coverage fraction of a mixture from the values of the steady-state
coverage fractions of pure component shapes.
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I. INTRODUCTION

Random sequential adsorption �RSA� is a typical model
for irreversible deposition of macromolecules and micro-
scopic particles such as polymers, colloids, bacteria, protein
or latex particles on solid surfaces. In this process objects are
deposited randomly and sequentially onto a substrate. The
depositing particles are not allowed to overlap with the pre-
viously deposited ones and the adsorbed particles do not de-
tach from the surface. RSA models are applied to processes
for which the relaxation over typical observation times is
negligible. See Evans �1� for a comprehensive survey. Recent
surveys include Privman �2�, Senger et al. �3�, and Talbot et
al. �4�.

On the other hand, there is a number of physical processes
that involve both adsorption and desorption of particles.
Adsorption-desorption processes are important in the binding
of ions to a Langmuir monolayer �5�, the interaction of pro-
teins with DNA �6�, and in many catalytic reactions. Re-
cently, there has been a renewed interest in the reversible
RSA because of its successful application to compaction of
granular materials. An adsorption-desorption model can re-
produce qualitatively the slow density relaxation �7–9�,
memory effects �10,11� and other features of weakly vibrated
granular materials.

Numerical results �12� for the single-layer irreversible
deposition of objects of various shapes on a triangular lattice
suggest that the approach to the jamming limit follows the
exponential law with the rate dependent mostly on the order
of symmetry axis of the shape. Recently, we have carried out
the extensive simulations of reversible RSA using objects of
different sizes and rotational symmetries on a triangular lat-
tice �8�. We have found that the growth of the coverage ��t�
above the jamming limit �jam to its steady-state value �� is
described by a pattern ��t�=��−��E��−�t /����, where E�

denotes the Mittag-Leffler function of order �� �0,1� �13�.
Parameters �, �, ��, and �����−�jam are the fitting param-
eters. Parameter � determines the characteristic time of the
coverage evolution and � measures the rate of deposition
process on this time scale. The parameter � is found to decay
with the desorption probability P− according to a power law
�=AP−

−�. Exponent � is the same for all the shapes, but pa-
rameter A depends only on the order of symmetry axis of the
shape. This established the crucial role of the geometrical
character and symmetry properties of the extended objects in
the reversible RSA dynamics.

Particles in nature, such as colloidal and bioparticles, are
not monodisperse. Because their sizes and shapes vary con-
siderably, polydispersity is almost an inevitable property in
many experimental situations. The binary mixture is the sim-
plest and the first step toward the understanding of polydis-
perse systems. In this paper we present the results of Monte
Carlo simulations for the reversible RSA of a two-
component mixture of extended objects on a triangular lat-
tice. Simulations are performed for objects of various shapes.
The depositing objects are modeled by self-avoiding walks
on the two-dimensional triangular lattice. A self-avoiding
shape of length � is a sequence of distinct vertices
��0 , . . . ,�l� such that each vertex is a nearest neighbor of its
predecessor, i.e., a walk of length � covers �+1 lattice sites.
Examples of such walks for �=1, . . . ,6 are shown in Table I.
On a triangular lattice objects with a symmetry axis of first,
second, third, and sixth order can be formed. Rotational sym-
metry of order ns, also called n-fold rotational symmetry,
with respect to a particular axis perpendicular to the triangu-
lar lattice, means that rotation by an angle of 2	 /ns does not
change the object. We concentrate here on the influence of
the order of symmetry axis of the shape on the kinetics of the
adsorption-desorption processes in two-component mixtures.
Special attention is paid to the mixtures of lattice objects of
different rotational symmetries but of the same number of
segments. We find that the mixtures exhibit a behavior that is
qualitatively different from the monodisperse adsorption.*vrhovac@phy.bg.ac.yu; http://www.phy.bg.ac.yu/̃ vrhovac/
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The paper is organized as follows. Section II describes the
details of the simulations. We give the simulation results and
discussions in Sec. III and IV. Finally, Sec. V contains some
additional comments and final remarks.

II. DEFINITION OF THE MODEL AND THE
SIMULATION METHOD

The process that we have investigated in this paper con-
sists of the random deposition and desorption of extended
objects from Table I on a triangular lattice of size L=120.
Periodic boundary conditions are used along all directions.
Consider a two-component mixture of objects �A� and �B�
with the symmetry axis of ns

�A� and ns
�B� order, respectively.

The reversible RSA process for a binary mixture is as fol-
lows. From a large reservoir of shapes, that contains the

shapes �A� and �B� with the fractional concentrations r�A� and
r�B�=1−r�A�, we choose one shape at random. The concentra-
tions r�A� and r�B� are unaffected by adsorption or desorption
events. We randomly select a lattice site and try to deposit
the chosen shape of length � with probability P+. If the se-
lected site is occupied by a deposited object the adsorption
attempt is rejected. If the selected site is unoccupied, we fix
the beginning of the walk that makes the chosen shape at this
site. Then we randomly pick one of the six possible orienta-
tions with equal probability, start the corresponding �-step
walk in that direction and search whether all successive �
sites are unoccupied. If so, we occupy these �+1 sites and
deposit the object; otherwise, the deposition attempt is re-
jected. Each adsorption attempt is followed by a desorption
one with probability P−. Desorption process starts by choos-
ing a lattice site at random. If this selected site is unoccupied,
the desorption step fails and the process continues by choos-
ing a new site for adsorption attempt. On the other hand, if
the selected site is occupied by an adsorbed object, the object
is removed from the lattice. The kinetics of the adsorption-
desorption model depends only on the ratio K= P+ / P−. In
order to save the computer time it is convenient to take the
adsorption probability to be P+=1, i.e., to try an adsorption
at each Monte Carlo step.

The time t is counted by the number of adsorption at-
tempts and scaled by the total number of lattice sites L2. The
quantity of interest is the fraction of total lattice sites,
��A�+�B��t�, covered by the deposited objects �A� and �B� at
time t. Let ��A��t� and ��B��t� denote the coverage fraction of
each species adsorbed at time t. The output data are averaged
over 100 independent runs for each choice of mixture and
each desorption probability P−. A more detailed description
of the numerical procedure used in our simulation has been
given elsewhere �8�.

Without desorption, the deposition process ceases when
all unoccupied spaces on the lattice are smaller than the size
of an adsorbed object. The system is then jammed in a non-
equilibrium disordered state. When the deposited particles
are subjected to desorption, the system formed by the ad-
sorbed objects on the lattice can reach an equilibrium state.
In the reversible case, the process reaches a steady state in
which the rate of adsorption is exactly balanced by the rate
of desorption. In this paper, �� will designate the steady-state
value of the fractional coverage, and �jam will refer to �� in
the case P−=0, i.e., the jamming limit. During the simulation
of irreversible deposition we record the number of inacces-
sible sites in the lattice. A site is inaccessible if it is occupied
or it cannot be the beginning of neither of the shapes making
the mixture. The jamming limit is reached when the number
of inaccessible sites is equal to the total number of lattice
sites.

For the lattice models, the asymptotic approach of the
coverage fraction ��t� to its jamming limit �jam is known to
be given by the exponential time dependence �14,15�,

��t� � �jam − �� exp�− t/
� , �2.1�

where �� and 
 are parameters that depend on the shape and
orientational freedom of depositing objects �12,16�. The
shapes with the symmetry axis of a higher order have lower

TABLE I. Coverage fraction �jam
�x� for various shapes �x� of

length ��x� on a triangular lattice. The colors �online only� are asso-
ciated with the different order ns

�x� of symmetry axis.
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values of 
, i.e., they approach their jamming limit more
rapidly. The parameter �� decreases with the object size for
the same type of shape.

Measured values for the jamming coverage �jam resulting
from the irreversible RSA of pure lattice shapes onto a trian-
gular lattice are given in Table I. The results show a strong
dependence of the jamming limit �jam on the shape of the
adsorbed species. We note that the results in Table I for �jam
differ from our previous estimates, e.g., �12�.

In the present paper results are reported for the above-
described conventional model of RSA, whereas in Ref. �12�
we have used the end-on model of RSA. In the end-on
model, the depositing shape always checks all possible direc-
tions from the selected site. If the object cannot be placed in
any of the six orientations, this site is denoted as inacces-
sible. Therefore, the local domain structures for an end-on
model are more dense than those of the conventional model.
Consequently, the jamming limit for the end-on model is
slightly larger than that for the conventional model.

The set of binary mixtures used in our simulations is
shown in Table II. Each mixture �x�+ �y� is composed of two
lattice objects �A�– �K� from Table I. The corresponding jam-
ming coverages �jam

�x�+�y� for r�x�=r�y�=1/2 are also given in
the last column of Table II.

III. DENSIFICATION KINETICS

Using the RSA algorithm defined in the preceding section
extensive calculations were performed in order to determine
the time evolution of the coverage fraction and the structure
of the adsorbed layer. We investigate the role that the mixture
composition and the symmetry properties of the shapes play
in the deposition process. We will mainly concentrate on the
case of binary mixtures, composed of the shapes of equal
number of segments.

The time behavior of the coverage fraction ��x�+�y��t� for
the first three mixtures �x�+ �y�= �B�+ �C� , �C�+ �D� , �B�
+ �D� in Table II are presented in Figs. 1–3, where two rela-
tively low values of P−=0.002 and 0.001 have been used.
These mixtures are composed of the shapes of length �=2.
The time evolution of ��x�+�y��t� for low values of P− shows a
similar behavior for both the single-component systems
�5,8,17,18� and for the mixtures. Indeed, the relaxation of the
system toward its equilibrium coverage fraction ��

�x�+�y� is a
two-stage process: at very early times of the process, when
the coverage fraction is small, the adsorption process is
dominant and the coverage grows rapidly in time; for large
enough coverages ���x�+�y��t���jam

�x�+�y�� the growth of the cov-
erage fraction ��x�+�y��t� requires the rearrangement of the
increasing number of particles in order to open a hole large
enough for the insertion of an additional particle, and the role
of desorption is crucial. This strongly suggests that the col-
lective events are responsible for the evolution of ��x�+�y��t�
for ��x�+�y��t���jam

�x�+�y�. Because these events involve the mul-
tiple particle transitions, they occur on a longer time scale
than the simple adsorption-desorption events.

In contrast to the monodisperse case the analysis of col-
lective processes is significantly more complex for the mix-
tures, because of the large variety of spatial arrangements
corresponding to transitions that involve two and more two-
dimensional shapes. However, we did carry out a detailed
analysis of the contribution to the densification kinetics com-
ing from each mixture component. Figure 1 shows the time
dependence of the coverages ��B��t� and ��C��t� resulting
from the reversible RSA of binary mixture of �B� and �C�

TABLE II. Coverage fraction �jam
�x�+�y� for various binary mixtures

�x�+ �y� of shapes �A�– �K� from Table I. The colors �online only�
are associated with the different order ns

�x� of symmetry axis. Jam-
ming coverages shown are for r�x�=r�y�=1/2.
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FIG. 1. �Color online� Shown here is the time dependence of the
coverage fraction for mixture �B�+ �C� �see Table II� and its com-
ponents for r�B�=r�C�=1/2 and for two different values of desorp-
tion probability P−=0.002, 0.001. Black �red� and gray �light blue�
lines represent the results obtained for P−=0.002 and 0.001, respec-
tively. The solid lines represent the temporal behavior of coverage
fraction ��B�+�C��t� �left-hand axis�. The dashed and dotted lines are
plotted against the right-hand axis and give the coverage fraction
versus time t of component shapes �B�, ��B��t� �dashed line�, and
�C�, ��C��t� �dotted line�. Thin vertical arrow indicates the beginning
of the equilibrium plateau in the time evolution of the coverage
fraction ��B�+�C��t� for P−=0.002.
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shapes, for r�B�=r�C�=1/2 and for two values of P−=0.002,
0.001. For the shape �B� of higher order of symmetry ns

�B�

=2, the coverage ��B��t� is a monotonously increasing func-
tion of time and has the same general features as the cover-
age ��B�+�C��t� for mixture �B�+ �C�. On the other hand, for
the shape �C� of lower order of symmetry ns

�C�=1, the cov-
erage ��C��t� is not monotonic in time. When the coverage
��B�+�C��t� approaches to the coverage fraction that is equal to
the jamming limit �jam

�B�+�C�=0.8526, the coverage ��C��t�
reaches a broad maximum. This is followed by a slow relax-
ation of ��C��t� to the smaller steady-state value ��

�C�. The
results show a strong dependence of the maximum of ��C�

��t� on the desorption probability P−. One clearly observes
�i� that a larger value for the maximum of the coverage
��C��t� is reached for the smaller desorption probability P−

and �ii� that the maximum of ��C��t� shifts towards larger
times as the desorption probability P− decreases.

The temporal evolutions of the total coverages ��C�+�D��t�
and ��B�+�D��t� for the reversible RSA of mixtures �C�+ �D�
and �B�+ �D� are shown in Figs. 2 and 3, respectively. Also
included in Figs. 2 and 3 are the time dependences of the
coverages ��B��t�, ��C��t�, and ��D��t� for each mixture com-
ponent, i.e., for the shapes �B�, �C�, and �D�. The simulations
were carried out with the parameters r�B�=r�C�=r�D�=1/2 and
P−=0.002, 0.001. These results confirm that, for sufficiently
high coverages, the large times coverage fraction of more
symmetric shapes exceeds the coverage fraction of less sym-
metric ones. The steady-state value of the coverage fraction
is always larger for the shapes with the symmetry axis of
higher order ns.

A qualitative interpretation of these results can be attained
by exploiting the above-mentioned picture of multiparticle
transitions for governing the late-time changes in the cover-
age fraction ��x�+�y��t�. In the following, we assume that the
ratio K= P+ / P− is large enough to ensure that the system of
adsorbed particles evolves continuously toward an equilib-
rium disordered state. In the initial stages of the process,
desorption events are negligible compared with adsorption
and the process displays an RSA-like behavior. When the
value of �jam

�x�+�y� is reached, the rare desorption events are
generally followed by immediate readsorption. Therefore,
the total number of particles is not changed by these single-
particle events. However, when one badly sited object des-
orbs and two particles adsorb in the opened good location,
then the number of particles is increased by one. Likewise, if
two well sited objects desorb and a single object adsorbs in
their stead, the number of particles is decreased by one.
These collective events are responsible for the density
growth above �jam

�x�+�y� �5,19�. At late enough time, when the
coverage fraction is sufficient to make the geometry of the
unoccupied sites complex, there is a strong dependence of
the adsorption rate on the adsorbed shape �8,12�. At large
times, adsorption events take place on isolated islands of
connected unoccupied sites. The individual islands have
well-defined positions and orientations for adsorption to take
place and act as selective targets for specific occupation
events. The symmetry properties of the shapes have a signifi-
cant influence on the filling of small isolated targets on the
lattice. Indeed, there is only a restricted number of possible
orientations in which an object can reach a previously
opened location, provided the location is small enough. For a
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FIG. 3. �Color online� Shown here is the time dependence of the
coverage fraction for mixture �B�+ �D� �see Table II� and its com-
ponents for r�B�=r�D�=1/2 and for two different values of desorp-
tion probability P−=0.002, 0.001. Black �red� and gray �light blue�
lines represent the results obtained for P−=0.002 and 0.001, respec-
tively. The solid lines represent the temporal behavior of coverage
fraction ��B�+�D��t� �left-hand axis�. The dashed and dotted lines are
plotted against the right-hand axis and give the coverage fraction
versus time t of component shapes �D�, ��D��t� �dashed line�, and
�B�, ��B��t� �dotted line�. Thin vertical arrow indicates the beginning
of the equilibrium plateau in the time evolution of the coverage
fraction ��B�+�D��t� for P−=0.002.
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FIG. 2. �Color online� Shown here is the time dependence of the
coverage fraction for mixture �C�+ �D� �see Table II� and its com-
ponents for r�C�=r�D�=1/2 and for two different values of desorp-
tion probability P−=0.002, 0.001. Black �red� and gray �light blue�
lines represent the results obtained for P−=0.002 and 0.001, respec-
tively. The solid lines represent the temporal behavior of coverage
fraction ��C�+�D��t� �left-hand axis�. The dashed and dotted lines are
plotted against the right-hand axis and give the coverage fraction
versus time t of component shapes �D�, ��D��t� �dashed line�, and
�C�, ��C��t� �dotted line�. Thin vertical arrow indicates the beginning
of the equilibrium plateau in the time evolution of the coverage
fraction ��C�+�D��t� for P−=0.002.
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shape with a symmetry axis of higher order there is a greater
number of possible orientations for deposition into an iso-
lated location at the lattice. Hence, the increase of the order
of symmetry of the shape enhances the rate of single particle
adsorption. In principle, the adsorption of asymmetric shapes
is slower than the adsorption of more regular and symmetric
shapes. This is reflected in the gradual decrease of the cov-
erage fraction with time for the shape with the symmetry
axis of lower order, as seen in Figs. 1–3.

One striking feature of Figs. 1–3 is the fact that the
steady-state value ��

�x�+�y� of the total coverage fraction
��x�+�y��t� was reached before the coverages ��x��t� and
��y��t� achieved their asymptotic values ��

�x� and ��
�y�. Each of

the thin vertical lines in Figs. 1–3 indicates the beginning of
the equilibrium plateau in the time evolution of the coverage
fraction ��x�+�y��t�. Note that in this regime, the coverage
fraction of the mixture fluctuates around its steady-state
value ��

�x�+�y�, but the coverage fraction of the shape with the
symmetry axis of higher order continues to grow at the ex-
pense of the coverage of the component with the symmetry
axis of lower order, that decreases. Very close to the equilib-
rium and for large values of K= P+ / P−, the two-particle
events contribution to the dynamics decreases dramatically
�5�. Then the adsorption and desorption events can be con-
sidered as spatially uncorrelated �7�, and the system can be
represented as a set of independent targets on the lattice in
which a particle is adsorbed or not. In this late stage, RSA
acts to preferentially adsorb the more symmetric shapes from
the reservoir. This is a consequence of the fact that unlike for
the less symmetric objects, much more orientations are al-
lowed for regular and symmetric shapes falling in the iso-
lated selective target spaces. For the coverages close to the
steady-state value ��

�x�+�y�, both rotational symmetry of the
shapes and desorption events manage the single-particle
readsorptions on the lattice and, eventually, allow replace-
ments of the less symmetric particles by the more symmetric
ones. Fine tuning of incoming and outgoing flux of each
component is occurred during this final stage. RSA acts to
preferentially adsorb the more regular shape from the reser-
voir, but higher value of its coverage fraction enhances the
frequency of desorption events. Moreover, the less symmet-
ric shape adsorbs less efficiently than the symmetric one, but
lower value of its coverage fraction decreases the frequency
of desorption events. The presence of the above described
mechanism, i.e., competing desorption and adsorption of
component shapes, implies that each mixture component
reaches a steady state in which the adsorption flux is exactly
balanced by the desorption flux.

We have also performed a set of numerical simulations
using large shapes of length �=6 that occupy seven lattice
sites. Figure 4 shows the time dependence of the coverage
fraction for mixtures �I�+ �J� and �J�+ �K� �see Table II� and
its components obtained by the simulations carried out with
the parameters r�I�=r�J�=r�K�=1/2 and P−=0.002. As it can
be seen, a larger steady-state value of the total coverage frac-
tion ��

�x�+�y� is reached by the reversible RSA process involv-
ing the rodlike shapes �I� �7-mers� compared with a similar
process involving the angled objects �K�. In both mixtures,
the coverage fraction of highly symmetric shape �J� exceeds

the coverage fraction of the other, less symmetric, mixture
component, at all times. The noticeable drop in the time evo-
lution of the coverage fraction ��K��t� for the angled object
�K� is thus a clear consequence of the enhanced frustration of
the spatial adsorption. The pattern formed during the revers-
ible RSA is made up of a large number of domains. In the
case of the deposition of 7-mers �I�, any such domain con-
tains a large number of objects all close to each other and
parallel. However, the growth of domains is substantially
frustrated in the case of the angled objects �K�. This is re-
flected in the relatively low local packing of adsorbed objects
in the vicinity of a given object �J� in the case of the angled
objects �K�, as compared to the more symmetric 7-mers �I�,
resulting in a smaller value of the coverage fraction in the
former case.

The simulations described above were augmented by ad-
ditional simulations that were carried out to explore the de-
pendence of the reversible RSA kinetics of the mixtures on
the number of segments of the shapes. Results for mixtures
�A�+ �B� and �A�+ �E� �see Table II� composed of the linear
segments �k-mers� of various lengths are shown in Figs. 5
and 6. In Fig. 5 we compare the temporal evolution of the
total coverage fraction ��A�+�B��t� for the two values of de-
sorption probability P−=0.002, 0.001. As expected, the
asymptotic coverage ��

�A�+�B� is higher for the lower desorp-
tion probability P−=0.001. On the other hand, the coverage
fraction ��A��t� of dimers �A� exceeds the coverage fraction
��B��t� of the larger shapes �B� at all times. The reasons for
these results are intuitively clear. Due to the fact that the
densification kinetics is dictated by geometric exclusion ef-
fects, in the competition for adsorption between the two spe-
cies of different number of segments the smaller shapes win.
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FIG. 4. �Color online� Shown here is the time dependence of the
coverage fraction for mixtures �I�+ �J� and �J�+ �K� �see Table II�
and their components for r�I�=r�J�=r�K�=1/2 and P−=0.002. Black
�red� and gray �light blue� lines represent the results obtained for
mixtures �J�+ �K� and �I�+ �J�, respectively. The solid lines repre-
sent the temporal behavior of coverage fractions ��I�+�J��t� and
��J�+�K��t� �left-hand axis�. The dashed and dotted lines are plotted
against the right-hand axis and give the coverage fraction versus
time t of component shapes �J�, ��J��t� �dashed line�, �I�, ��I��t�
�dotted line�, and �K�, ��K��t� �dotted line�.
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Moreover, the larger shapes desorb much more efficiently
than the smaller ones, that leads to the higher coverage frac-
tion of the smaller species. From Fig. 6 it is evident that for
small values of desorption probability P−, the dynamics of
mixture �A�+ �E� close to the steady-state limit ��

�A�+�E� is
entirely governed by the dynamics of the smaller species �A�.

The contribution of the larger shape �E� to the total coverage
fraction ��A�+�E��t� does not vanish for large times, but it be-
comes negligible.

Figure 7 puts into evidence a somewhat counterintuitive
feature for the case of reversible deposition of polydisperse
mixtures. At high coverages the contribution of the mixture
components to the total coverage fraction is found to be
larger for the larger shapes than for the smaller ones. In Fig.
7 we present the reversible RSA kinetics of mixture �J�
+ �H� �see Table II� for the desorption probability P−=0.01
and for r�J�=r�H�=1/2. The shapes �J� and �H� occupy seven
and six lattice sites, respectively, and therefore introduce a
size bidispersity into the deposition phenomena. Moreover,
the results shown in Figs. 1–4 suggest that the rotational
symmetries associated with specific shapes have a substantial
influence on the adsorption rate of the mixture components.
Shapes �J� and �H� have the order of symmetry axis equal to
ns=6 and ns=1, respectively. The great symmetry order dif-
ference between the larger and the smaller particles in the
bidisperse mixtures provides the predominance of the larger
shapes in the total coverage at all times.

IV. COMPOSITION DEPENDENCE OF THE
STEADY-STATE COVERAGE FRACTION

The purpose of this section is to find an expression for the
steady-state coverage fraction of mixture in terms of the
steady-state coverage fractions of pure lattice shapes. To our
knowledge, there are very few works concerning this topic.
Theoretical effort was restricted only to a binary mixture of
particles with very large size differences �14,20,21�. Talbot
and Schaaf �20� analyzed the irreversible adsorption of mix-
tures of hard disks of greatly differing diameters. They found
that the jamming limit �jam

�S�+�L� of the mixture of small �S� and
large �L� disks is accurately given by
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FIG. 5. �Color online� Shown here is the time dependence of the
coverage fraction for mixture �A�+ �B� �see Table II� and its com-
ponents for r�A�=r�B�=1/2 and for two different values of desorp-
tion probability P−=0.002, 0.001. Black �red� and gray �light blue�
lines represent the results obtained for P−=0.002 and 0.001, respec-
tively. The solid lines represent the temporal behavior of coverage
fraction ��A�+�B��t� �left-hand axis�. The dashed and dotted lines are
plotted against the right-hand axis and give the coverage fraction
versus time t of component shapes �A�, ��A��t� �dashed line�, and
�B�, ��B��t� �dotted line�.
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FIG. 6. �Color online� Shown here is the time dependence of the
coverage fraction for mixtures �A�+ �B� and �A�+ �E� �see Table II�
and their components for r�A�=r�B�=r�E�=1/2 and P−=0.002. Black
�red� and gray �light blue� lines represent the results obtained for
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against the right-hand axis and give the coverage fraction versus
time t of component shapes �A�, ��A��t� �dashed line�, �B�, ��B��t�
�dotted line�, and �E�, ��E��t� �dotted line�.
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�jam
�S�+�L� = �jam

�L� + 0.547�1 − �1 + 
�2�jam
�L� � , �4.1�

where �jam
�L� is the jamming limit of large disk �L� when de-

posited from the mixture, 
=
S /
L is the diameter ratio, and
0.547 is the jamming coverage corresponding to the irrevers-
ible RSA of equal sized disks on a continuous surface.

Like many other statistical-mechanical problems, exact
solutions for the steady-state coverage and for the kinetics of
the reversible RSA process in one-component systems exist
only in one dimension �4,22,23�. Furthermore, to date there
is no exact analytical solution for the reversible RSA process
in mixtures of a finite number of species. Therefore, much of
the information about the reversible RSA kinetics of mix-
tures in higher dimensions is provided by numerical simula-
tions or by experiment. We have analyzed the simulation
data in order to find a dependence of the steady-state cover-
age fraction of a mixture on the steady-state coverage frac-
tions of pure lattice shapes. We propose the following simple
formula for calculating the steady-state coverage fraction
��

�x�+�y� in the mixture �x�+ �y� of equal sized shapes �x� and
�y� with fractional concentrations r�x� and r�y�=1−r�x� in the
infinite reservoir:

1

��
�x�+�y� = r�x� 1

��
�x� + r�y� 1

��
�y� , �4.2�

where ��
�x� and ��

�y� are the steady-state coverage fractions of
pure lattice shapes. Equation �4.2� shows that the reciprocal
of the steady-state coverage fraction of a mixture changes
linearly with the concentration of a component shape in the
reservoir.

Formula �4.2� is supported by a good agreement with the
numerical simulations. We have numerically tested whether
this formula can be used to predict the value of a steady-state
coverage fraction of a mixture from the values of the steady-
state coverage fractions of pure component shapes. Figure 8
compares the steady-state coverage fraction ��

�x�+�y� of mix-
tures �x�+ �y�= �B�+ �D�, �C�+ �D�, and �F�+ �G� �see Table
II� as a function of the desorption probability P− with the
values obtained using Eq. �4.2�. Objects are deposited from
the reservoir which contains the shapes �x� and �y� with frac-
tional concentrations r�x�=0.8 and r�y�=0.2, respectively.
Closed symbols refer to the data obtained from the numerical
simulations, and the results obtained from Eq. �4.2� are
shown for comparison as opened symbols. One clearly ob-
serves that Eq. �4.2� excellently well predicts the values of
��

�x�+�y� from the values of the steady-state coverage fraction
of pure component shapes ��

�x� and ��
�y�, in the whole range of

desorption probability P− considered.
In Figs. 9–11 we show the results obtained for various

compositions of mixtures �x�+ �y�= �B�+ �D�, �C�+ �D�, and
�F�+ �G� �see Table II�. For each value of r�x� /r�y�=0.6/0.4,
0.5/0.5, and 0.4/0.6, simulations were carried out for vari-
ous values of the parameter P−. Once again we observe that
the values of the steady-state coverage fraction of a mixture
calculated using Eq. �4.2� agree very well with the simula-
tion results. The deviation is up to 0.1% for mixtures �B�
+ �D� and �C�+ �D� and up to 2% for mixture �F�+ �G�.
Namely, the data shown in Figs. 9–11 for mixture �F�+ �G�

indicate that the values of ��
�F�+�G� calculated using Eq. �4.2�

deviate slightly from our simulation results, especially at low
values of desorption probability P−. A possible reason for
this difference could lie in the inaccuracy of the numerically
determined steady-state values of the coverage fraction ��

�G�

for large and highly symmetric object �G� at low values of
desorption probability P−. Recently we have shown �8� that
the time coverage behavior is severely slowed down with the
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�x�+�y� against

desorption probability P− for mixtures �x�+ �y�= �B�+ �D�, �C�
+ �D�, and �F�+ �G� �see Table II�. Fractional concentrations of the
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�x�+�y� against

desorption probability P− for mixtures �x�+ �y�= �B�+ �D�, �C�
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increase of the order of rotational symmetry of the shape.
Hence, the time required to achieve the steady state increases
with the symmetry order. Likewise, the dynamics of revers-
ible RSA gets drastically slower when the desorption prob-
ability decreases. Unfortunately, we do not have a sufficient
computing power to precisely determine the steady-state val-
ues of coverage fraction ��

�G� for the shape G. Nevertheless,
the agreement between the calculated values for �� for the
mixtures and the results obtained by numerical simulations is
very good.

V. CONCLUDING REMARKS

We have performed extensive numerical simulations of
the reversible RSA using binary mixtures composed of the
shapes of different number of segments and rotational sym-
metries on a triangular lattice. The shapes are made by self-
avoiding lattice steps. A systematic approach is made by ex-
amining a wide variety of object shapes and their mixtures.

The simulations have shown that the coverage kinetics of
a mixture strongly depends on the symmetry properties of
the component shapes. It has been shown that, for suffi-
ciently large times, the coverage fraction of more symmetric
shapes exceeds the coverage fraction of less symmetric ones.
We have also highlighted the significance of collective
events for governing the time coverage behavior of compo-

nent shapes with different rotational symmetries.
Furthermore, the coverage kinetics of a mixture has a rich

behavior in comparison to that of a reversible deposition of
pure lattice shapes. From our results we can identify a new
regime for the reversible RSA in the mixtures of objects of
different symmetries that has no counterpart in single com-
ponent systems. In this regime, the coverage fraction of a
mixture fluctuates around its steady-state value, but the cov-
erage fraction of the shape with the symmetry axis of higher
order continues to grow at the expense of the coverage of the
component with the symmetry axis of lower order.

We have proposed a simple formula �4.2� that can be used
to predict the value of a steady-state coverage fraction of a
mixture from the values of the steady-state coverage frac-
tions of pure component shapes. This is important because
the numerical simulations of the reversible RSA of mixtures
are very time consuming. It is clear that analytic work is
needed to fully explore the range of validity and conditions
under which Eq. �4.2� can be established. However, any the-
oretical treatment of this problem is necessarily very com-
plex and it is beyond the scope of this paper.
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